
Quadrotor Drone Control
System

Optimizing Quadrotor stability through basic

Control Theory

Author: Nil Trujillo Albert

ntrujialb@gmail.com

January 29, 2025



1 Introduction

Quadrotor drones have gained significant attention in both research and industry
due to their versatility, agility, and wide range of applications, including aerial
surveillance, package delivery, and autonomous navigation. However, their un-
stable dynamics require an effective control strategy to maintain stability and
ensure accurate movement. Controlling a quadrotor involves solving a complex
nonlinear system where multiple control inputs must be adjusted in real time
to regulate a desired position.

The primary goal of this project is to design, model, and simulate a stable
system for a quadrotor drone using an appropriate controller. The focus is on
ensuring that the drone can maintain a stable altitude and orientation (roll,
pitch, and yaw) under different input conditions, serving as a fundamental step
toward an advanced trajectory control.

However, this project does not yet address trajectory tracking, which remains
a key challenge in quadrotor control. The stabilization system developed here
lays the groundwork for future improvements, where trajectory planning and
autonomous navigation can be explored as the next step.

This project show how even basic control techniques can be used to stabilize a
complex dynamic system ensuring stable flight. Future work can focus on inte-
grating path-following algorithms and real-time adaptability, ultimately moving
toward a fully autonomous quadrotor control system.

1



2 3D Modeling of the quadrotor drone

The 3D modeling of the quadrotor drone serves as a fundamental step in the
physical design along with the mathematical models and simulations required
for the development of this project. This model provides a representation of the
drone’s structure, enabling accurate calculations of key parameters such as mass
distribution, moments of inertia, and aerodynamic properties. These parame-
ters are key inputs for the mathematical controller proposed in this document
designed to stabilize the drone’s yaw, roll, pitch, and altitude.

The quadrotor drone has been modeled using SolidWorks as a preliminary design
that closely resembles the real physical structure but is not intended as the final
design for manufacturing. This 3D model serves as a foundation to accurately
simulate and analyze the drone’s behavior, providing the necessary physical
parameters for the precise and efficiency of the controller.

Figure 1: Drone assembly from Solid Works

While the model captures the essential characteristics of the drone, its primary
purpose is to support the development and testing of the yaw, roll, pitch, and
altitude controllers. These controllers are the main focus of this project, and
the 3D model ensures that their design is based on realistic and reliable data,
bridging the gap between theoretical modeling and practical implementation.

Components Material Mass
Central frame Aluminium 6061-T4 0.76 Kg

Propeller guards Aluminium 6061-T4 0.07 Kg
Propellers ABS 0.01 Kg

Table 1: List of materials

2



Ixx Iyy Izz
0.01 0.01 0.01

Table 2: Principal moments of inertia [m4]

3 Drone Dynamics

To describe the dynamics of a drone, we define two coordinate systems:

• Global (Inertial) Frame A: This frame remains fixed and is used to de-
scribe the position and orientation of the drone from a determined position
(eg. ground). It is denoted as (x, y, z).

• Local (Body-Fixed) Frame B: This frame moves with the drone and is
centered at its center of mass (CM). It is used to describe forces, torques,
and angular velocities acting on the drone. It is denoted as (X ′, Y ′, Z ′).

Figure 2: A and B coordinate systems

3



The state of the drone is represented by the generalized coordinates:

q⃗ = [x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, p, q, r]

where:

• x, y, z: Position of the drone’s center of mass (CM) respect to the global
frame.

• ϕ, θ, ψ: Angles of rotation (roll, pitch and yaw) that describe the orienta-
tion of the drone relative to the global frame.

• ẋ, ẏ, ż: Translational velocities in the local frame.

• p, q, r: Angular velocities in the local frame.

The orientation of the drone is described using a ZYX Euler-angle rotation. The
rotation matrix from the local (body-fixed) frame to the global (inertial) frame
is given by:

RA
B = Rx(ϕ)Ry(θ)Rz(ψ), (1)

where the individual rotation matrices are:

Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 (2)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (3)

Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 (4)

Combining (2), (3), (4), the full rotation matrix RA
B is:

RA
B =

cψcθ cψsθsϕ − sψcϕ cψsθcϕ + sψsϕ
sψcθ sψsθsϕ + cψcϕ sψsθcϕ − cψsϕ
−sθ cθsϕ cθcϕ

 (5)

where cϕ = cosϕ, sϕ = sinϕ, cθ = cos θ, sθ = sin θ, cψ = cosψ, and sψ = sinψ.

The angular velocities in the local frame, denoted by (p, q, r), are related to the
rates of change of the Euler angles (ϕ̇, θ̇, ψ̇) through the following relationship:pq

r

 = W

ϕ̇θ̇
ψ̇

 (6)

4



where W is given by:

W =

1 0 −sθ
0 cϕ cθsϕ
0 −sϕ cθcϕ

 (7)

3.1 Equations of Motion using the Newton-Euler approach

Using Newton’s second law, the translational equations of motion for the drone
are expressed as:

m

ẍÿ
z̈

 = RA
B

 0
0
FT

−m

00
g

 (8)

where:

• FT =
∑4
i=1 Fi: Total thrust generated by the propellers.

• m: Mass of the drone.

• g: Gravitational acceleration.

Using Euler’s equation, the rotational dynamics are described by:

I

ṗq̇
ṙ

 =

Mx

My

Mz

−

pq
r

× I

pq
r

 (9)

where:

• I: Inertia matrix of the drone with symmetry.

• Mx,My,Mz: Moments about the roll, pitch, and yaw axes, respectively.

• p, q, r: Angular velocities in the local (body-fixed) frame.

I =

Ixx 0 0
0 Iyy 0
0 0 Izz


The total thrust and torques with respect to the local coordinate system can be
calculated as follows:

FT =

4∑
i=1

Fi = F1 + F2 + F3 + F4 (10)

where Fi represents the thrust generated by the four propellers.∑
Mx = 0 =⇒ Mx = L(F2 − F4) (11)

5



∑
My = 0 =⇒ My = L(F3 − F1) (12)∑

Mz = 0 =⇒ Mz = L(F1 − F2 + F3 − F4) (13)

Figure 3: Thrust diagram of the drone

• L: Distance from the center of mass to each rotor in the local coordinate
system.

The relationship between the components [FT ,Mx,My,Mz]
T and the individual

rotor forces [F1, F2, F3, F4]
T can be expressed as:

FT
Mx

My

Mz

 =


1 1 1 1
0 L 0 −L
−L 0 L 0
L −L L −L



F1

F2

F3

F4

 (14)

3.2 Equations of Motion Using the Euler-Lagrange Ap-
proach

To design an appropriate controller, the equations of motion can be expressed
in a compact form using the Euler-Lagrange approach. The governing equation
is:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi,NC (15)

where L = T − V is the Lagrangian, T is the kinetic energy, V is the potential
energy, and Qi,NC represents the non-conservative forces. Expanding the Euler-
Lagrange equation, we get:

d

dt

∂T

∂q̇i
− ∂T

∂qi
+
∂V

∂qi
= Qi,NC (16)

6



The potential and kinetic energy of the system are given by:

T =
1

2
m

(
ẋ2 + ẏ2 + ż2

)
+

1

2

[
Ixxp

2 + Iyyq
2 + Izzr

2
]

(17)

V = −mgz (18)

where:

• m: Mass of the drone.

• g: Gravitational acceleration.

Using the Lagrangian approach, the translational equations of motion are de-
rived as:

mẍ = 0, mÿ = 0, mz̈ +mg = FT (19)

which can be compactly written as before:

m

ẍÿ
z̈

 = RA
B

 0
0
FT

−

 0
0
mg

 (20)

Substituting the components of the rotation matrix RA
B , we get:

m

ẍÿ
z̈

 = FT

cψsθcϕ + sψsϕ
sψsθcϕ − cψsϕ

cθcϕ

−

 0
0
mg

 (21)

For the rotational motion, Euler-Lagrange’s equation gives us:

Ixxṗ
d

dt

∂p

∂q̇i
+Iyy q̇

d

dt

∂p

∂q̇i
+Izz ṙ

d

dt

∂p

∂q̇i
−Ixxp

∂p

∂qi
+Iyyq

∂q

∂qi
+Izzr

∂r

∂qi
=Mi (22)

where Mi represents the moments about the respective axes.

This expands into individual equations for ϕ, θ, and ψ.
Reorganizing these, the translational and rotational dynamics can be expressed
as a second order differential equation with matrix form:

A
d2χ

dt2
+B

dχ

dt
= M (23)

where:

χ =

ϕθ
ψ

 , M =

Mx

My

Mz

 (24)

and the matrices A and B are defined as:

A =

 Ixx 0 −IxxSθ
0 IyyC

2
ϕ + IzzS

2
ϕ (Iyy − Izz)CϕSϕCθ

−IxxSθ (Iyy − Izz)CϕSϕCθ IxxS
2
θ + IyyS

2
ϕC

2
θ + IzzC

2
ϕC

2
θ

 (25)

7



B =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 (26)

The elements Cij of B are detailed as:

C11 = 0 (27)

C12 = (Iyy − Izz)(ϕ̇CϕSϕ + ψ̇S2
ϕCϕ) + (Izz − Iyy)ψ̇C

2
ϕSϕ − Ixxψ̇Cθ (28)

C13 = (Izz − Iyy)ψ̇CϕSϕCθ (29)

C21 = (Izz − Iyy)(ϕ̇CϕSϕ + ψ̇SϕCθ) + (Iyy − Izz)ψ̇C
2
ϕCθ + Ixxψ̇Cθ (30)

C22 = (Izz − Iyy)ϕ̇CϕSϕ (31)

C23 = −Ixxψ̇SθCθ + Iyyψ̇S
2
ϕSθCθ + Izzψ̇C

2
ϕSθCθ (32)

C31 = (Iyy − Izz)ψ̇CϕSϕ − Ixxθ̇Cθ (33)

C32 = (Izz − Iyy)(ϕ̇CϕSϕ + ψ̇S2
ϕCθ)

+ (Iyy − Izz)ϕ̇C
2
ϕCθ + Ixxθ̇SθCθ

− Iyyψ̇S
2
ϕSθCθ − Izzψ̇C

2
ϕSθCθ (34)

C33 = (Iyy − Izz)ϕ̇CϕSϕC
2
θ − Iyy θ̇S

2
ϕCθSθ − Izz θ̇C

2
ϕCθSθ + Ixxθ̇CθSθ (35)

These equations provide a compact and structured representation of the drone’s
dynamics, making them suitable for designing our desired controller. The matrix
form allows for efficient numerical computation and facilitates integration.

4 PID Controller design

In control engineering, the PID (Proportional-Integral-Derivative) controller is
one of the most commonly used methods for ensuring system stability and pre-
cision. It consists of three components: a proportional term (P) that reacts to
the current error, an integral term (I) that corrects accumulated past errors,
and a derivative term (D) that anticipates future errors by analyzing the rate
of change. The combination of these three terms allows the system to adjust
dynamically to changes and disturbances, making it ideal for our system that
require real-time stability and fast response.

A PID controller operates by continuously calculating the error e(t), which
represents the difference between the desired setpoint r(t) and the actual system
output y(t):

e(t) = r(t)− y(t) (36)

The control signal u(t), which determines the input to the system (e.g., motor
thrust adjustments), is computed as:

8



u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(37)

where:

• Kp is the proportional gain, which scales the present error.

• Ki is the integral gain, which accumulates past errors to eliminate steady-
state error.

• Kd is the derivative gain, which anticipates future errors by evaluating the
rate of change of the error signal.

Using the Laplace transform, the PID equation can be rewritten in the frequency
domain:

U(s) =

(
Kp +

Ki

s
+Kds

)
E(s) (38)

Expressing this as a transfer function:

C(s) = Kp +
Ki

s
+Kds (39)

The closed-loop transfer function of the system, assuming a unity feedback
configuration, is given by:

T (s) =
C(s)G(s)

1 + C(s)G(s)
(40)

where G(s) is the plant transfer function representing the system dynamics.

In this project, PID controllers are applied separately to control the four main
state variables of the quadrotor.
The parameters Kp, Ki, and Kd are adjusted using trial and error, adjusting
parameters iteratively based on performance metrics like overshoot, settling
time, and steady-state error.

4.1 Controlling the Drone’s Position and Orientation

The quadrotor drone operates by continuously monitoring its state, detecting
deviations from the desired trajectory, and applying corrective actions through
thrust adjustments in each rotor. The system begins by obtaining sensor data
to determine its current state:

x(t) = [ϕ, θ, ψ, z]

where ϕ (roll), θ (pitch), and ψ (yaw) define the drone’s orientation, while z
represents its altitude. The desired reference state is given by:

9



xd(t) = [ϕd, θd, ψd, zd]

The error is then computed as:

e(t) = xd(t)− x(t),

which serves as the input to the PID controller:

FT = uz, Mx = uroll, My = upitch, Mz = uyaw.

The controller calculates the corrective action necessary to minimize this error
using equation (37) computing the required forces and torques. These forces
and torques are then introduced into the equations of motion of the quadrotor
governed by equations (21) , (23). The updated orientation and position of the
quadrotor are obtained by numerically integrating these equations.

Once the total thrust FT and moments (Mx,My,Mz) are calculated, they must
be distributed among the four rotors. The force-moment relationship of the
quadrotor is given by equation (14) where each rotor force Fi is related to the
corresponding angular velocity ωi by:

Fi = Kfω
2
i

where Kf = 1
2ρACtR

2 is the aerodynamic force coefficient, with ρ representing
air density, A the blade rotor area, Ct the thrust coefficient, and R the radius
of the rotor.

The necessary rotor speeds are thus given by:

ωi =

√
Fi
Kf

The computed rotor speeds ωi are sent as commands to the motors, adjusting
their rotation rates accordingly. This process runs iteratively in a continuous
feedback loop, where the drone continuously updates its position and orien-
tation, detects new errors, recalculates forces and torques, and adjusts rotor
speeds to maintain stability. Through this iterative correction, the PID con-
troller effectively minimizes the error and ensures smooth stabilization of the
drone.

10



5 Simulation results

To evaluate the performance of the implemented control system, the quadrotor
dynamics were simulated using MATLAB/Simulink. The simulation framework
was designed to numerically solve the equations of motion, incorporating the
forces and torques computed by the control algorithm. This allowed an easy vi-
sualization and analysis of the drone’s response under different input conditions
and disturbances.

Figure 4: Simulink diagram

To test the effectiveness of our control strategy, the system was subjected to
different test cases, including:

• Step response evaluation: Where the quadrotor is commanded to reach
a specific altitude or orientation.

• Sinusoidal tracking: To test the system’s ability to follow periodic ref-
erence inputs.

• Pulse generator response: Where the drone is exposed to periodical
perturbations to evaluate how well the controller restores stability.

The simulations revealed that the Proportional-Integral (PI) controller fails to
stabilize the system due to the accumulation of the integral term, which leads
to oscillatory and unstable behavior.

On the other hand, the Proportional-Derivative (PD) controller provides the
best performance, offering a fast response with minimal overshoot and strong
disturbance rejection. The PID controller performs slightly worse than the PD,
as the integral term introduces additional correction that is not required, slightly
reducing the system’s responsiveness.

Based on these results, the PD controller is chosen as the optimal control strat-
egy for this quadrotor system, achieving rapid stabilization and smooth tracking
of desired trajectories.

11



Controller Overshoot (%) Settling Time (s) Stability

P High Fast but oscillatory Unstable

PI Very High Slow, oscillatory Unstable

PD Low Fast Stable

PID Moderate Slightly slower than PD Stable

Table 3: Comparison of control strategies for quadrotor stabilization

Coordinate Kp Kd

Z (Altitude) 45 10

Roll 45 12

Pitch 45 12

Yaw 45 12

Table 4: PD Controller Gains for Each Coordinate

The following figures illustrate the simulation results obtained for different in-
put signals, allowing us to test the effectiveness of the system’s response. By
analyzing these results, we can evaluate the controller’s ability to track various
reference movements, stabilize the system, and minimize errors under different
conditions.

Figure 5: Step response for the z coordinate

12



Figure 6: Sine wave response for the z coordinate

Figure 7: Sine wave response for the z coordinate

Figure 8: From 30º to 0º for roll pitch yaw angles

13



Figure 9: Sine wave response for roll pitch yaw angles

Figure 10: Step response from 0º to 15º for phi (roll)

14



Figure 11: Step response from 0º to 15º for theta (pitch)

Figure 12: Step response from 0º to 15º for psi (yaw)

15



Coordinate Overshoot (%) Peak Time
(s)

Settling
Time (s)

Steady
State Error

Z (Altitude) 1.49% 0.697 1.2 0

Roll (ϕ) 0% 0.85 0.85 0

Pitch (θ) 0% 0.9 0.9 0

Yaw (ψ) 0% 1.2 1.2 0

Table 5: Performance metrics of the PD controller for altitude and angular
stabilization

The simulation results demonstrate the effectiveness of the PD controller in sta-
bilizing the quadrotor’s altitude and angular coordinates. The system achieves
good performance across all axes, with minimal overshoot, fast peak times, and
short settling times, ensuring a stable and responsive flight behavior.

For the z coordinate, the system exhibits an overshoot of only 1.5%, which is
within acceptable limits for precise height control. The peak time is 0.697s,
meaning the system reacts quickly to altitude changes, and it fully stabilizes
within 1.2 seconds, with zero steady-state error. This confirms that the se-
lected Kp and Kd values provide a well-balanced response, avoiding excessive
oscillations while maintaining fast tracking.

In the angular coordinates (ϕ, θ, ψ) the controller achieves zero overshoot, which
is ideal for smooth and controlled drone movements. The peak times vary
slightly reflecting the different control characteristics of each axis. All angles
stabilize within 1.2s, demonstrating an efficient response with no residual oscil-
lations.

16



6 Conclusions

The goal of this project was to apply a basic yet effective PD controller to
regulate a highly dynamic and complex system through numerical simulations
in MATLAB/Simulink which i’ve accomplished. I validated the system’s re-
sponse under different input conditions, demonstrating the utility of using a
proportional-derivative approach for quadrotor stabilization.

The results confirmed that the PD controller successfully stabilizes the system,
ensuring fast response times, minimal overshoot, and zero steady-state error in
angular stabilization. This performance shows that a well-tuned PD controller
can effectively manage the drone’s orientation and altitude without requiring
more complex control strategies at this stage.

Although many advanced control methods exist such as nonlinear controllers,
adaptive techniques and model predictive control, the purpose of this project
was to establish a solid foundation for stabilization using a simple approach.
The PD controller was chosen intentionally for its ease of implementation, low
computational cost, and robustness in handling small disturbances. However,
this work represents only the first step in a wider control strategy.

The next stage of this project would be focusing on trajectory control, allowing
the quadrotor to autonomously follow predefined paths while maintaining sta-
bility. This will involve additional control layers and possibly more sophisticated
algorithms to optimize tracking performance.

7 References

References

[1] Nicolás Monteagudo Duro, ”Modelado y control de un cuadricóptero
AR.DRONE,” 2016

[2] Juan Gabriel Jaramillo Bucheli, Fernando Alonso Vaca De La Torre, ”Im-
plementación de un sistema de control robusto para seguimiento de trayec-
toria de tres cuadricópteros en formación,” 2018

[3] Nicolás Parra Ballesteros, ”Modelado y simulación de sistema de vuelo de
un dron con detección de fallos,” 2020

17


